Abstract:Organosilicon compounds have shown tremendous potential in drug discovery and their synthesis stimulates wide interest. Multicomponent cross-coupling of alkenes with silicon reagents is used to yield complex silicon-containing compounds from readily accessible feedstock chemicals but the reaction with simple alkenes remains challenging. Here, we report a regioselective silylalkylation of simple alkenes, which is enabled by using a stable Ni(II) salt and an inexpensive trans−1,2-diaminocyclohexane ligand as a catalyst. Remarkably, this reaction can tolerate a broad range of olefins bearing various functional groups, including alcohol, ester, amides and ethers, thus it allows for the efficient and selective assembly of a diverse range of bifunctional organosilicon building blocks from terminal alkenes, alkyl halides and the Suginome reagent. Moreover, an expedient synthetic route toward alpha-Lipoic acid has been developed by this methodology.